Skip to content
FREE SHIPPING ON ALL DOMESTIC ORDERS $35+
FREE SHIPPING ON ALL US ORDERS $35+

Diffusion of Innovations, 5th Edition / Edition 5

Availability:
in stock, ready to be shipped
Save 1% Save 1%
Original price $37.50
Original price $37.50 - Original price $37.50
Original price $37.50
Current price $36.99
$36.99 - $36.99
Current price $36.99
Now in its fifth edition, Diffusion of Innovations is a classic work on the spread of new ideas.

In this renowned book, Everett M. Rogers, professor and chair of the Department of Communication & Journalism at the University of New Mexico, explains how new ideas spread via communication channels over time. Such innovations are initially perceived as uncertain and even risky. To overcome this uncertainty, most people seek out others like themselves who have already adopted the new idea. Thus the diffusion process consists of a few individuals who first adopt an innovation, then spread the word among their circle of acquaintances--a process which typically takes months or years. But there are exceptions: use of the Internet in the 1990s, for example, may have spread more rapidly than any other innovation in the history of humankind. Furthermore, the Internet is changing the very nature of diffusion by decreasing the importance of physical distance between people. The fifth edition addresses the spread of the Internet, and how it has transformed the way human beings communicate and adopt new ideas.

ISBN-13: 9780743222099

Media Type: Paperback

Publisher: Free Press

Publication Date: 08-16-2003

Pages: 576

Product Dimensions: 6.12(w) x 9.25(h) x 1.40(d)

Dr. Everett M. Rogers is Distinguished Professor in the Department of Communication and Journalism at the University of New Mexico (UNM), where he teaches and conducts research on the diffusion of innovations.

Read an Excerpt

Chapter 1

ELEMENTS OF DIFFUSION

There is nothing more difficult to plan, more doubtful of success, nor more dangerous to manage than the creation of a new order of things....Whenever his enemies have the ability to attack the innovator, they do so with the passion of partisans, while the others defend him sluggishly, so that the innovator and his party alike are vulnerable.

Niccolò Machiavelli, The Prince (1513)

Getting a new idea adopted, even when it has obvious advantages, is difficult. Many innovations require a lengthy period of many years from the time when they become available to the time when they are widely adopted. Therefore, a common problem for many individuals and organizations is how to speed up the rate of diffusion of an innovation. The following case illustration provides insight into some common difficulties facing diffusion campaigns.

Water Boiling in a Peruvian Village:

Diffusion That Failed


The public health service in Peru attempts to introduce innovations to villagers to improve their health and lengthen their lives. This change agency encourages people to install latrines, burn garbage daily, control house flies, report cases of infectious diseases, and boil drinking water. These innovations involve major changes in thinking and behavior for Peruvian villagers, who do not understand the relationship of sanitation to illness. Water boiling is an especially important health practice for Peruvian villagers. Unless they boil their drinking water, patients who are cured of an infectious disease in a medical clinic often return within a short time to be treated again for the same disease.

A two-year water-boiling campaign conducted in Los Molinas, a peasant village of two hundred families in the coastal region of Peru, persuaded only eleven housewives to boil water. From the viewpoint of the public health agency, the local health worker, Nelida, had a simple task: to persuade the housewives of Los Molinas to add water boiling to their pattern of daily behavior. Even with the aid of a medical doctor, who gave public talks on water boiling, and fifteen village housewives who were already boiling water, Nelida's diffusion campaign failed. To understand why, we need to take a closer look at the culture, the local environment, and the individuals in Los Molinas.

Most residents of Los Molinas are peasants who work as field hands on local plantations. Water is carried by can, pail, gourd, or cask. The three sources of water in Los Molinas include a seasonal irrigation ditch close to the village, a spring more than a mile away from the village, and a public well whose water most villagers dislike. All three sources are subject to pollution at all times and show contamination whenever tested. Of the three sources, the irrigation ditch is the most commonly used. It is closer to most homes, and the villagers like the taste of its water.

Although it is not feasible for the village to install a sanitary water system, the incidence of typhoid and other waterborne diseases could be greatly reduced by boiling water before it is consumed. During her two-year campaign in Los Molinas, Nelida made several visits to every home in the village and devoted especially intensive efforts to twenty-one families. She visited each of the selected families between fifteen and twenty-five times; eleven of these families now boil their water regularly.

What kinds of people do these numbers represent? We describe three village housewives: one who boils water to obey custom, one who was persuaded to boil water by the health worker, and one of the many who rejected the innovation.

Mrs. A: Custom-Oriented Adopter

Mrs. A is about forty and suffers from a sinus infection. The Los Molinas villagers call her the "sickly one." Each morning, Mrs. A boils a potful of water, which she uses throughout the day. She has no understanding of germ theory, as explained by Nelida. Her motivation for boiling water is a complex local custom of "hot" and "cold" distinctions. The basic principle of this belief system is that all foods, liquids, medicines, and other objects are inherently hot or cold, quite apart from their actual temperature. In essence, the hot-cold distinction serves as a series of avoidances and approaches in such behavior as pregnancy, child rearing, and the health-illness system.

Boiled water and illness are closely linked in the norms of Los Molinas. By custom, only the ill use cooked, or "hot" water. If an individual becomes ill, it is unthinkable to eat pork (very cold) or drink brandy (very hot). Extremes of hot and cold must be avoided by the sick; therefore, raw water, which is perceived to be very cold, must be boiled to make it appropriate.

Villagers learn from early childhood to dislike boiled water. Most can tolerate cooked water only if a flavoring, such as sugar, lemon, or herbs, is added. Mrs. A likes a dash of cinnamon in her drinking water. The village belief system does not involve the notion of bacteriological contamination of water. By tradition, boiling is aimed at eliminating the "cold" quality of unboiled water, not the harmful bacteria. Mrs. A drinks boiled water in obedience to local norms, because she perceives herself as ill. She adopted the innovation, but for the wrong reason.

Mrs. B: Persuaded Adopter

The B family came to Los Molinas a generation ago, but they are still strongly oriented toward their birthplace in the high Andes. Mrs. B worries about lowland diseases that she feels infest the village. It is partly because of this anxiety that the public health worker, Nelida, was able to convince Mrs. B to boil water. To Mrs. B, Nelida is a friendly authority (rather than a "dirt inspector," as she is seen by other housewives) who imparts useful knowledge and brings protection from uncertain threats. Mrs. B not only boils water but has also installed a latrine and sent her youngest child to the health center for a checkup.

Mrs. B is marked as an outsider in the community by her highland hairdo and stumbling Spanish. She will never achieve more than marginal social acceptance in the village. Because the community is not an important reference group to her, Mrs. B can deviate from the village norms on health innovations. With nothing to lose socially, Mrs. B gains in personal security by heeding Nelida's advice. Mrs. B's practice of boiling water has no effect in improving or damaging her marginal status. She is grateful to Nelida for teaching her how to neutralize the danger of contaminated water, which she perceives as a lowland peril.

Mrs. C: Rejector

This housewife represents the majority of Los Molinas families who were not persuaded by the efforts of the change agent during the two-year water-boiling campaign. In spite of Nelida's repeated explanations, Mrs. C does not understand germ theory. How, she argues, can microbes survive in water that would drown people? Are they fish? If germs are so small that they cannot be seen or felt, how can they hurt a grown person? There are enough real threats in the world to worry about — poverty and hunger — without bothering about tiny animals that one cannot see, hear, touch, or smell. Mrs. C's allegiance to traditional village norms is at odds with the boiling of water. A firm believer in the hot-cold superstition, she feels that only the sick should drink boiled water.

Why Did the Diffusion of Water Boiling Fail?

This intensive two-year campaign by a public health worker in a Peruvian village of two hundred families, aimed at persuading housewives to boil drinking water, was largely unsuccessful. Nelida was able to encourage only about 5 percent of the population, eleven families, to adopt the innovation. The diffusion campaign in Los Molinas failed because the innovation was perceived as culturally inappropriate by the villagers. Local tradition links hot foods with illness. Boiling water makes water less "cold" and hence appropriate only for the sick. If a person is not ill, he or she is prohibited by village norms from drinking boiled water. Only individuals who are not integrated into local networks risk defying the community norm on water boiling. An important factor regarding the adoption rate of an innovation is its compatibility with the values, beliefs, and past experiences of individuals in the social system. Nelida and her superiors in the public health agency should have understood the hot-cold belief system, as it is found throughout Peru (and in most nations of Latin America, Africa, and Asia). The indigenous knowledge system caused the failure of the diffusion effort for water boiling in Los Molinas.

Nelida's failure demonstrates the importance of interpersonal networks in the adoption or rejection of an innovation. Socially an outsider, Mrs. B was marginal to the Los Molinas community, although she lived there for several years. Nelida was a more important referent for Mrs. B than were her neighbors, who shunned her. Anxious to win reflected social prestige from the higher-status Nelida, Mrs. B adopted water boiling, not because she understood the correct health reasons but because she wanted to obtain Nelida's approval. Thus we see that the diffusion of innovations is a social process, even more than a technical matter.

Nelida worked with the wrong housewives if she wanted to launch a self-generating diffusion process in Los Molinas. She concentrated her efforts on village women such as Mrs. A and Mrs. B. Unfortunately, they were perceived as a sickly one and a social outsider, respectively, and were not perceived as social models of water-boiling behavior by the other women. The village opinion leaders, who could have activated local networks to spread the innovation, were ignored by Nelida. As a result, the rate of adoption of the innovation did not reach a critical mass, after which the diffusion process would have become self-sustaining.

How potential adopters view a change agent affects their willingness to adopt new ideas. In Los Molinas, Nelida was perceived differently by lower- and middle-status housewives. Most poor families saw the health worker as a "snooper" sent to Los Molinas to pry for dirt and to press already harassed housewives into keeping cleaner homes. Because the lower-status housewives had less free time, they were unlikely to talk with Nelida about water boiling. Their contacts outside the community were limited, and as a result, they saw the technically proficient Nelida with eyes bound by the traditional beliefs of Los Molinas. They distrusted this outsider, whom they perceived as a social stranger. Nelida, who was middle class by Los Molinas standards, was able to secure more positive results from housewives whose socioeconomic status and cultural background were more similar to hers. This tendency for more effective communication to occur with those who are more similar to a change agent occurs in most diffusion campaigns. Unfortunately, those individuals who most need the help provided by the change agent are least likely to accept it.

Nelida was "innovation-oriented" rather than "client-oriented." She was unable to put herself in the role of the village housewives, and thus her attempts at persuasion failed to reach her clients because the message did not suit their needs. Nelida talked to villagers about germ theory, which they could not (and did not need to) understand. These factors produced the diffusion failure in Los Molinas. Once the remainder of the book has been read, it will be easier to understand the water-boiling case.

What Is Diffusion?

Diffusion is the process in which an innovation is communicated through certain channels over time among the members of a social system. It is a special type of communication, in that the messages are concerned with new ideas. Communication is a process in which participants create and share information with one another in order to reach a mutual understanding. This definition implies that communication is a process of convergence (or divergence) as two or more individuals exchange information in order to move toward each other (or apart) in the meanings that they give to certain events. We think of communication as a two-way process of convergence, rather than as a one-way, linear act in which one individual seeks to transfer a message to another in order to achieve certain effects (Rogers and Kincaid, 1981). A linear conception of human communication may accurately describe certain communication acts involved in diffusion, such as when a change agent seeks to persuade a client to adopt an innovation. But when we look at what came before such an event and at what followed, we often realize that the event is only one part of a total process in which information is exchanged between the two individuals. For example, a client may go to a change agent with a specific problem, and the innovation may be recommended as a possible solution to this problem. The change agent-client interaction may continue through several cycles, as a process of information exchange.

Diffusion is a special type of communication in which the messages are about a new idea. This newness of the idea in the message content gives diffusion its special character. The newness means that some degree of uncertainty is involved in diffusion. Uncertainty is the degree to which a number of alternatives are perceived with respect to the occurrence of an event and the relative probability of these alternatives. Uncertainty implies a lack of predictability, of structure, of information. Information is a means of reducing uncertainty. Information is a difference in matter-energy that affects uncertainty in a situation where a choice exists among a set of alternatives (Rogers and Kincaid, 1981). A technological innovation embodies information and thus reduces uncertainty about cause-effect relationships in problem solving.

Diffusion is a kind of social change, defined as the process by which alteration occurs in the structure and function of a social system. When new ideas are invented, diffused, and adopted or rejected, leading to certain consequences, social change occurs. Of course, such change can happen in other ways, too; for example, a political revolution, a natural event such as a drought or an earthquake, or a government policy.

Some authors restrict the term "diffusion" to the spontaneous, unplanned spread of new ideas and use the concept of "dissemination" for diffusion that is directed and managed. In this book we use the word "diffusion" to include both the planned and the spontaneous spread of new ideas.r

Controlling Scurvy in the British Navy

Many technologists believe that advantageous innovations will sell themselves, that the obvious benefits of a new idea will be widely realized by potential adopters, and that the innovation will diffuse rapidly. Seldom is this the case. Most innovations, in fact, diffuse at a disappointingly slow rate, at least in the eyes of the inventors and technologists who create the innovations and promote them to others.

Scurvy control illustrates how slowly an obviously beneficial innovation spreads. In the early days of long sea voyages, scurvy killed more sailors than did warfare, accidents, and other causes. For instance, of Vasco da Gama's crew of 160 men who sailed with him around the Cape of Good Hope in 1497, 100 died of scurvy. In 1601, an English sea captain, James Lancaster, conducted an experiment to evaluate the effectiveness of lemon juice in preventing scurvy. Captain Lancaster commanded four ships that sailed from England on a voyage to India. He served three teaspoonfuls of lemon juice every day to the sailors in one of his four ships. These men stayed healthy. The other three ships constituted Lancaster's "control group," as their sailors were not given any lemon juice. On the other three ships, by the halfway point in the journey, 110 out of 278 sailors had died from scurvy. So many of these sailors got scurvy that Lancaster had to transfer men from his "treatment" ship in order to staff the three other ships for the remainder of the voyage.

These results were so clear that one would have expected the British Navy to promptly adopt citrus juice for scurvy prevention on all ships. Not until 1747, about 150 years later, did James Lind, a British Navy physician who knew of Lancaster's results, carry out another experiment on the HMS Salisbury. To each scurvy patient on this ship, Lind prescribed either two oranges and one lemon or one of five other supplements: a half pint of sea water, six spoonfuls of vinegar, a quart of cider, nutmeg, or seventy-five drops of vitriol elixir. The scurvy patients who got the citrus fruits were cured in a few days and were able to help Dr. Lind care for the other patients. Unfortunately, the supply of oranges and lemons was exhausted in six days.

Certainly, with this further solid evidence of the ability of citrus fruits to combat scurvy, one would expect the British Navy to have adopted this innovation for all ship's crews on long sea voyages. In fact, it did so, but not until 1795, forty-eight years later, when scurvy was immediately wiped out. After only seventy more years, in 1865, the British Board of Trade adopted a similar policy and eradicated scurvy in the merchant marine.

Why were the authorities so slow to adopt the idea of citrus for scurvy prevention? Other, competing remedies for scurvy were also being proposed, and each such cure had its champions. For example, Captain Cook's reports from his voyages in the Pacific did not provide support for curing scurvy with citrus fruits. Further, Dr. Lind was not a prominent figure in the field of naval medicine, and so his experimental findings did not get much attention. While scurvy prevention was generally resisted for years by the British Navy, other innovations, such as new ships and new guns, were readily accepted. So the Admiralty did not resist all innovations.

Obviously, more than just the relative advantages of an innovation, even when its benefits are clearly demonstrated, is necessary for its diffusion and adoption. The reader may think that such slow diffusion could only have happened in the distant past, before the contemporary era of scientific, experimental evaluations of innovations. On the contrary; consider the present-day case of the nondiffusion of the Dvorak keyboard.

Nondiffusion of the Dvorak Keyboard

Most individuals who write on a computer do not realize that their fingers tap out words on a keyboard that is known as "QWERTY," named after the first six keys on the upper row of letters. The QWERTY keyboard is intentionally inefficient and awkward. This keyboard takes twice as long to learn as it should and makes us work about twenty times harder than necessary. But QWERTY has persisted since 1873, and today unsuspecting individuals are taught to use the QWERTY keyboard, unaware that a much more efficient keyboard is available. In recent years of talking about the QWERTY keyboard with hundreds of large audiences, the present author has never encountered anyone who uses an alternative.

Where did QWERTY come from? Why does it persist in the face of much more efficient alternative keyboard designs? QWERTY was invented by Christopher Latham Sholes, who designed this keyboard to slow down typists. In his day, the type bars on a typewriter hung down in a sort of basket and pivoted up to strike the paper; then they fell back into place by gravity. When two adjoining keys were struck rapidly in succession, they jammed. Sholes rearranged the keys on a typewriter keyboard to minimize such jamming; he "anti-engineered" the letter arrangement in order to make the most commonly used letter sequences awkward. By thus making it difficult for a typist to operate the machine and slowing down typing speed, Sholes's QWERTY keyboard allowed early typewriters to operate with a minimum of jamming. His design was then used in the manufacture of all typewriters. Early typewriter salesmen could impress customers by pecking out "TYPEWRITER" as all of the letters necessary to spell this word were found in the top row (QWERTYUIOP) of the machine.

Prior to 1900, most typists used the two-finger, hunt-and-peck system. Later, as touch typing became popular, dissatisfaction with the QWERTY typewriter began to grow. Typewriters became mechanically more efficient, and the QWERTY keyboard design was no longer necessary to prevent jamming. The search for an improved design was led by Professor August Dvorak at the University of Washington, who in 1932 used time-and-motion studies to create a much more efficient keyboard arrangement. Dvorak filmed people while they were typing and spent a decade analyzing which operations slowed them down. The Dvorak keyboard has the letters A,O,E,U,I,D,H,T,N, and S across the home row of the typewriter. Less frequently used letters were placed on the upper and lower rows of keys. About 70 percent of typing is done on the home row, 22 percent on the upper row, and 8 percent on the lower row. On the Dvorak keyboard, the amount of work assigned to each finger is proportionate to its skill and strength. Further, Professor Dvorak engineered his keyboard so that successive keystrokes fell on alternative hands; thus, while a finger on one hand is stroking a key, a finger on the other hand can be moving into position to hit the next key. Typing rhythm is thus facilitated; this hand alternation was achieved by putting the vowels (which represent 40 percent of all letters typed) on the left-hand side and the major consonants that usually accompany these vowels on the right-hand side of the keyboard.

Professor Dvorak was thus able to avoid the typing inefficiencies of the QWERTY keyboard. For instance, QWERTY overloads the left hand, which must type 57 percent of ordinary copy. The Dvorak keyboard shifts this emphasis to 56 percent on the stronger right hand and 44 percent on the weaker left hand (for a right-hander, as are 90 percent of the public). Only 32 percent of typing is done on the home row with the QWERTY system, compared to 70 percent with the Dvorak keyboard. The newer arrangement requires less jumping back and forth from row to row. With the QWERTY keyboard, an efficient typist's fingertips travel more than twelve miles a day, jumping from row to row. These unnecessary, intricate movements cause mental tension and carpal tunnel syndrome and lead to more typographical errors. Typists typing on the Dvorak keyboard have broken all speed records.

One might expect, on the basis of its overwhelming advantages, that the Dvorak keyboard would have completely replaced the inferior QWERTY keyboard. On the contrary, after more than seventy years, almost all typists still use the inefficient QWERTY keyboard. Even though the American National Standards Institute and the Equipment Manufacturers Association have approved the Dvorak keyboard as an alternate design, it is still almost impossible to find a typewriter or a computer keyboard that is arranged in the more efficient layout. Vested interests are involved in hewing to the old design: manufacturers, sales outlets, typing teachers, and typists themselves. Unbeknown to most computer users, their machine that comes equipped with a QWERTY keyboard can easily be switched to a Dvorak keyboard. Nevertheless, a considerable effort, estimated at about a week's training, is required for someone accustomed to the QWERTY design to become proficient on a Dvorak keyboard.

Here we see that technological innovations are not always diffused and adopted rapidly, even when the innovation has obvious advantages. As the reader may have guessed by now, the present book was typed on a QWERTY keyboard.

Four Main Elements in the Diffusion of Innovations

Previously we defined diffusion as the process by which (1) an innovation (2) is communicated through certain channels (3) over time (4) among the members of a social system. The four main elements are the innovation, communication channels, time, and the social system. These elements are identifiable in every diffusion research study and in every diffusion campaign or program (such as the attempted diffusion of water boiling in a Peruvian village).

The following description of these four elements in diffusion constitutes an overview of the main concepts that will then be detailed in Chapters 2 through 11.

1. The Innovation

An innovation is an idea, practice, or object that is perceived as new by an individual or other unit of adoption. It matters little, so far as human behavior is concerned, whether or not an idea is "objectively" new as measured by the lapse of time since its first use or discovery. The perceived newness of the idea for the individual determines his or her reaction to it. If an idea seems new to the individual, it is an innovation.

Newness in an innovation need not just involve new knowledge. Someone may have known about an innovation for some time but not yet developed a favorable or unfavorable attitude toward it, nor have adopted or rejected it. "Newness" of an innovation may be expressed in terms of knowledge, persuasion, or a decision to adopt.

Among the important research questions addressed by diffusion scholars are (1) how earlier adopters differ from later adopters of an innovation (see Chapter 7), (2) how the perceived attributes of an innovation, such as its relative advantage, compatibility, and so on, affect its rate of adoption, whether relatively rapidly or more slowly, as is detailed in Chapter 6, and (3) why the S-shaped diffusion curve "takes off" at about 10 to 20 percent adoption, when interpersonal networks become activated so that a critical mass of adopters begin using an innovation (see Chapter 8). It should not be assumed that the diffusion and adoption of all innovations are necessarily desirable. Some harmful and uneconomical innovations are not desirable for either an individual or the social system. Further, the same innovation may be desirable for one adopter in one situation but undesirable for another potential adopter whose situation differs. For example, mechanical tomato pickers were adopted rapidly by large commercial farmers in California, but these machines were too expensive for small-sized tomato growers, and thousands of farmers were thus forced out of tomato production (see Chapter 4). Similarly, at present about half of U.S. households own a personal computer. The half who do not perceive that they have little use for a computer, or else they use a computer at work or in a cybercafé.

TECHNOLOGICAL INNOVATIONS, INFORMATION, AND UNCERTAINTY

Most of the new ideas whose diffusion has been analyzed are technological innovations, and we often use the word "innovation" and "technology" as synonyms. A technology is a design for instrumental action that reduces the uncertainty in the cause-effect relationships involved in achieving a desired outcome. A technology usually has two components: (1) a hardware aspect, consisting of the tool that embodies the technology as a material or physical object, and (2) a software aspect, consisting of the information base for the tool. For example, we often speak of (1) "computer hardware," consisting of semiconductors, transistors, electrical connections, and a frame that protects these electronic components, and (2) "computer software," consisting of the coded commands, instructions, manuals, and other information aspects of this tool that allow us to use it for certain tasks. This example illustrates the close relationship between hardware and software, between a tool and the way it is used.

We often think of technology mainly in terms of hardware. Indeed, sometimes the hardware side of a technology is dominant. But in other cases, a technology may be almost entirely composed of information; examples are a political philosophy such as Marxism, a religious idea such as Christianity, a news event, and a policy such as a municipal no-smoking ordinance. The diffusion of such software innovations has been investigated, although a methodological problem in such studies is that their adoption cannot be so easily traced or observed. Such idea-only innovations have a relatively lower degree of observability and thus a slower rate of adoption.

A number of new products involve both a hardware component and a software component, with the hardware purchased first so that the software component can then be utilized. Examples are VCRs and videotapes, compact disc players and CDs, and personal computers and computer software programs. Often a company will sell a hardware product at a relatively low price in order to capture market share and then sell its software at a relatively high price in order to recover profits. An example is video game players; these are sold at a fairly low price, but the video games to be played on them are sold at a relatively high price. This "shaver-and-blades" strategy is commonly used to speed the diffusion of consumer electronics innovations.

Even though the software component of a technology is often not so apparent, we should not forget that a technology almost always represents a mixture of hardware and software. According to our definition, technology is a means of uncertainty reduction that is made possible by information about the cause-effect relationships on which the technology is based. This information often results from the scientific R&D activities that developed the technology. A technological innovation usually has at least some degree of benefit for its potential adopters, but this advantage is not always clear cut to those intended adopters. They are seldom certain that an innovation represents a superior alternative to the previous practice